双曲線関数の実部と虚部
命題
\(x,y\in\mathbb{R}\)に対して,以下が成り立つ: \[\begin{aligned}
& \sinh(x+\mathrm{i}y) = \sinh x \cos y + \mathrm{i}\cosh x \sin y,\\
& \cosh(x+\mathrm{i}y) = \cosh x \cos y + \mathrm{i}\sinh x \sin y,\\
& \tanh(x+\mathrm{i}y) = \frac{\sinh x\cosh x + \mathrm{i}\sin y \cos y}{1 + \sinh^2 x - \sin^2 y}.
\end{aligned}\]
証明
\[\begin{aligned}
\sinh(x+\mathrm{i}y)
&= \frac{1}{2}\mathrm{e}^{x+\mathrm{i}y} - \frac{1}{2}\mathrm{e}^{-x-\mathrm{i}y}\\
&= \frac{1}{2}\mathrm{e}^x(\cos y+\mathrm{i}\sin y) - \frac{1}{2}\mathrm{e}^{-x}(\cos y-\mathrm{i}\sin y)\\
&= \frac{1}{2}(\mathrm{e}^x-\mathrm{e}^{-x})\cos y+ \frac{1}{2}(\mathrm{e}^x+\mathrm{e}^{-x})\sin y\\
&= \sinh x\cos y+ \mathrm{i}\cosh x\sin y
\end{aligned}\] \[\begin{aligned}
\cosh(x+\mathrm{i}y)
&= \frac{1}{2}\mathrm{e}^{x+\mathrm{i}y} + \frac{1}{2}\mathrm{e}^{-x-\mathrm{i}y}\\
&= \frac{1}{2}\mathrm{e}^x(\cos y+\mathrm{i}\sin y) + \frac{1}{2}\mathrm{e}^{-x}(\cos y-\mathrm{i}\sin y)\\
&= \frac{1}{2}(\mathrm{e}^x+\mathrm{e}^{-x})\cos y+ \frac{1}{2}(\mathrm{e}^x-\mathrm{e}^{-x})\sin y\\
&= \cosh x\cos y+ \mathrm{i}\sinh x\sin y
\end{aligned}\] \[\begin{aligned}
\tanh(x+\mathrm{i}y)
&= \frac{\sinh(x+\mathrm{i}y)}{\cosh(x+\mathrm{i}y)}\\
&= \frac{\sinh x\cos y+ \mathrm{i}\cosh x\sin y}{\cosh x\cos y+ \mathrm{i}\sinh x\sin y}\\
&= \frac{\sinh x\cos y+ \mathrm{i}\cosh x\sin y}{\cosh x\cos y+ \mathrm{i}\sinh x\sin y}
~\frac{\cosh x\cos y- \mathrm{i}\sinh x\sin y}{\cosh x\cos y- \mathrm{i}\sinh x\sin y}\\
\end{aligned}\] ここで,分母・分子について \[\begin{aligned}
\text{分子}
&= (\sinh x\cos y+ \mathrm{i}\cosh x\sin y)(\cosh x\cos y- \mathrm{i}\sinh x\sin y)\\
&= \sinh x\cosh x(\cos y^2+\sin y^2) + \mathrm{i}(\cosh^2x-\sinh^2x)\sin y\cos y\\
&= \sinh x\cosh x+ \mathrm{i}\sin y\cos y,
\end{aligned}\] \[\begin{aligned}
\text{分母}
&= (\cosh x\cos y+ \mathrm{i}\sinh x\sin y)(\cosh x\cos y- \mathrm{i}\sinh x\sin y)\\
&= \cosh x^2\cos y^2 + \sinh^2x\sin^2y\\
&= (1+\sinh^2x)(1-\sin^2y) + \sinh^2x\sin^2y\\
&= 1 + \sinh^2x - \sin^2y
\end{aligned}\] が成り立つ. ゆえに, \[\begin{aligned}
\tanh(x+\mathrm{i}y) = \frac{\sinh x\cosh x+ \mathrm{i}\sin y\cos y}{1 + \sinh^2x - \sin^2y}
\end{aligned}\]
コメント
コメントを投稿